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Abstract

Primates are important seed dispersers in natural ecosystems and agro-ecosystems, but the
latter scenario remains under-studied. The degree to which primates favour plant regeneration
greatly depends on post-dispersal processes. The main objective of this study was to compare
patterns of seed/seedling fate and seedling recruitment in two habitats of the black howler
monkey (Alouatta pigra Lawrence 1933), rustic cocoa and rain forest, and two types of seed-
deposition locations, monkey latrines and control locations. Field experiments were carried out
within the non-overlapping home ranges of six monkey groups, three in cocoa and three in
forest. Seed and seedling fates were assessed for one focal tree species, Brosimum lactescens.
The probabilities of seed survival (0.52), germination (0.72), seedling establishment (0.73)
and early seedling survival (0.38) were not affected by habitat or seed-deposition location.
Late seedling survival was similar in the two habitats but was higher in control locations
(0.22) than in latrines (0.09). In cocoa, 4641 seedlings of 59 species were recorded, in forest
3280 seedlings of 68 species. Seedling recruitment was similar in both habitats, but latrines
had higher densities than control locations. The importance of agro-ecosystems with low man-
agement intensity for the maintenance of ecological processes in anthropogenic landscapes is
discussed.

Introduction

Tropical forests and the primate communities inhabiting them are suffering unprecedented rates
of anthropogenic disturbances (Almeida-Rocha et al. 2017, Estrada et al. 2017). Changes in plant-
primate interactions caused by disturbancesmay trigger other effects rippling through the complex
ecological networks of these ecosytems (McConkey & O’Farrill 2016, McConkey et al. 2012). Seed
dispersal through frugivory is a prominent plant–primate interaction in most tropical forests
(Andresen et al. 2018,McConkey 2018). Primate seed dispersal often causes the spatial aggregation
of seeds in locations used for resting. Recurrent input of seeds can result in higher densities of
juveniles of the dispersed plant species (Anzures-Dadda et al. 2011, Bravo 2012, Julliot 1997,
Russo & Augspurger 2004). Thus, a decline in primate abundance may alter plant community
patterns (Stevenson 2011) and ecosystem function (Peres et al. 2016).

Conversion of natural ecosystems to agricultural lands is one of the main drivers of primate
declines (Almeida-Rocha et al. 2017, Estrada et al. 2017). However, certain types of agro-
ecosystem may have high value for maintaining biodiversity in general (Goulart et al. 2012,
Perfecto & Vandermeer 2008) and primates in particular (Estrada et al. 2012, Guzmán et al.
2016, Zárate et al. 2014). Given the current trends of land-cover change, primate extinctions
and the consequent loss of their ecological functions might be avoided if populations are able
to survive inmodified landscapes (Almeida-Rocha et al. 2017), a scenario in which ‘ecologically-
friendly’ agro-ecosystems can play a crucial role.

Despite the available information on primate presence in agricultural systems, we know little
about how primate interactions with plants are altered in agro-ecosystems (Andresen et al. 2018,
Estrada et al. 2012). For example, while several studies have assessed aspects related to seed dis-
persal by primates in agro-ecosystems, such as diet and foraging patterns (Williams-Guillén
et al. 2006), very few studies have focused directly on seed dispersal, either of the crop species
(Hockings et al. 2017), or of native plants (Zárate et al. 2014). Further, primary seed dispersal is
only one step in the complex multi-phase seed-dispersal cycle (sensu Wang & Smith 2002) of
plant regeneration. Given a high context-dependency in the outcome of each phase (Balcomb &
Chapman 2003, Feer & Forget 2002), and conflicts among them (Schupp 2007), the direction
and/or intensity of the effects of anthropogenic disturbances on plant regeneration are not
always easy to predict (Anzures-Dadda et al. 2016, Kurten 2013).

https://www.cambridge.org/tro
https://doi.org/10.1017/S026646741800041X
https://doi.org/10.1017/S026646741800041X
mailto:andresen@iies.unam.mx


www.manaraa.com

Primary seed dispersal by the black howler monkey (Alouatta
pigra Lawrence 1933) is known to be similar in both rustic cocoa
plantations and rain forest in the Lacandona region of Mexico
(Zárate et al. 2014). The main objective of our study was to test
the hypothesis that, while the post-dispersal fate of seeds dispersed
by howler monkeys and the resulting seedling recruitment will be
affected by the seed-deposition pattern associated with howler
monkeys’ primary seed dispersal, this effect will be similar in
the two habitats. We designed two field experiments to assess
the following predictions: (1) The post-dispersal fate of seeds
and seedlings is not affected by habitat (cocoa vs. forest) but is
affected by seed deposition location (monkey latrine vs. control),
and (2) the density of naturally recruited seedlings of monkey-
dispersed species does not differ between habitats, but differs in
monkey latrines vs. control locations.

Study Site

Research was conducted in the Lacandona rain-forest region in the
Mexican state of Chiapas (Marqués de Comillas Municipality;
16º8 058.13 0 0N, 90º53 040.27 0 0W). The predominant natural
vegetation is tropical rain forest. Mean annual temperature
and rainfall range between 24–26°C and 2500–3500 mm, respec-
tively (Estrada et al. 2004). With an area of 13,000 km2, the
Lacandona region represents one of the few large remaining areas
of tropical rain forest in Mesoamerica and the last one in Mexico
and is considered a very important reservoir of biodiversity
(Cuarón 2000). South-east of the main protected area (Montes
Azules Biosphere Reserve) lies the human-modified landscape
where we carried out this study; it consists of a mosaic of different
vegetation types, including large forest areas (> 2000 ha), forest
fragments, shade cocoa plantations, annual crops and pastures.

We conducted our study during a 26-mo period (May 2011–
July 2013), in a 120-ha area covered by shade cocoa and in the
abutting forest (> 2000 ha local reserve where hunting and
logging are prohibited). The shade cocoa was under rustic man-
agement, which means that the cocoa trees are planted in the
understorey of the original forest cover and that management
intensity is low (Moguel & Toledo 1999). Cocoa trees in the study
region were planted in the 1980s. However, in the 1990s most
cocoa plantations were abandoned or replaced by other crops,
due to a fungal disease. At the time of our research, management
of plantations included low levels of cocoa harvest, some pruning
and removal of a few shade trees. The number of native tree and
liana species was similar in the two vegetation types; in cocoa,
mean stem density (diameter at breast height ≥10 cm) of native
trees and lianas was lower than in forest, but when cocoa trees
were included in the measurement, overall stem density was
higher in cocoa plantations (Zárate et al. 2014).

At the time the study was conducted, the number of groups
and individuals of howler monkeys in the two habitats was
similar (14 and 13 groups in 120 ha; 44 and 41 individuals
km−2, in cocoa and forest, respectively). Some groups lived exclu-
sively in one or the other vegetation type and some groups
included both cocoa and forest in their home ranges (Zárate
et al. 2014). We carried out our experiments within the home
ranges of three monkey groups that exclusively inhabited cocoa
and three groups that exclusively inhabited forest. The three
groups in cocoa and the three in forest had similar activity areas
(8.9 ha in cocoa, 5.4 ha in forest), number of individuals (8 in
the forest, 6–8 in the cocoa), behavioural parameters and seed-
dispersal patterns (Zárate et al. 2014).

Methods

Seed and seedling fate

Focal species and experimental design
We conducted field experiments with seeds and seedlings of
one focal plant species in the Moraceae, Brosimum lactescens
(S. Moore) C.C. Berg. Brosimum lactescens is a shade-tolerant,
slow-growing canopy tree with fleshy fruits consumed by frugivo-
rous birds and mammals, and thus seed dispersal of this plant spe-
cies does not solely depend on the howler monkey. However,
rather than assessing the post-dispersal fate of seeds and seedling
of this plant species in particular, our aim was to compare post-
dispersal processes between habitats and between seed-deposition
sites, for which we used B. lactescens as a model species.

In the study sites B. lactescens has high values of relative density
and basal area and is a very important species in the howler
monkey’s diet (Zárate et al. 2014). Seeds are relatively large
(10 × 9 mm, 0.4 g fresh weight), lack dormancy and germination
of seeds collected from fallen fruits occurs mostly within 2 wk
(65%) in our study region (Benítez-Malvido et al. 2014). Total
germination percentage is 80% for seeds from fallen trees and
∼100% for seeds defecated by black howler monkeys (Benítez-
Malvido et al. 2014). Seedlings establish in the understorey and
are shade-tolerant. Fruiting showed a bimodal pattern during
our study, with ripe fruits being present during two main periods:
March–June and October–December. The first period coincides
with the peak fruiting period of the tree community.

In each of the two habitats, within the home ranges of three
groups that inhabited the forest and three groups that inhabited
the cocoa, we chose 30 experimental sites: 15 monkey latrines and
15 control locations (non-latrine), for a total of 60 sites. Latrines were
identified as areas of the forest where ≥25% of all the defecations
observed during 18 mo for eachmonkey group occurred, while con-
trol locations were areas where defecations were never observed.
Latrines occur underneath trees used for resting, and howler mon-
keys generally chose large trees for this activity. All cocoa and forest
latrines were in areas used bymonkeys that exclusively inhabited the
cocoa and forest habitat, respectively (Zárate et al. 2014). Distance
between experimental sites was ≥50 m; distance between sites and
adult B. lactescens trees was also ≥50 m. To characterize the micro-
climate experienced by seeds and seedlings in the two habitats and
the two types of seed-deposition location we measured illuminance
(with an Extech light meter at sunrise, between 06h00 and 06h15, to
avoid variation due to sunflecks or different degrees of cloudiness
among days), relative humidity and maximum air temperature
(measured with a HOBO U23-001 v2 data logger for 20 d per plot).
Measurements for all 60 sites were taken during March–April 2013.

Seed survival
InMay 2011 we obtained 300 B. lactescens seeds from freshly fallen
fruits with no external sign of any damage, collected underneath
five parent trees. Seeds were manually extracted from fruits and
after 1–2 d were marked by attaching a 1.5-m-long nylon thread
with epoxy cement in order to facilitate finding seeds that were
moved by animals (Forget 1990). The following day (to allow
for the cement to dry), marked seeds were individually imbedded
in 10 g of fresh howler monkey dung (i.e. dung collected that same
morning of the experimental setup) and immediately placed on the
forest surface. In each of the 60 experimental sites we placed five
seeds on the forest floor in a 2 × 2-m area (leaf litter was not
removed). Seed fate was recorded for 2 wk (according to the time
of germination observed in the next experiment), using the
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following categories: seed apparently intact and visible on the soil
surface (only dung removed by dung beetles), seed apparently
intact and buried by dung beetles, seed apparently intact and
moved by dung beetles under the leaf litter (dung beetles were
identified as the secondary dispersers in these cases, because seeds
were found<1m from the original position and often a dung beetle
burrow was observed in the immediate vicinity), seed eaten (by
rodents, when husk remains or a partially eaten seed was found;
by insects, when a small exit hole was observed and the seed
was empty), seed attacked by pathogens (rotten seeds) and seeds
removed (when only the thread remained but the seed had been
removed, most likely by rodents, and was not found). Seeds in
the first three fate categories were considered alive as they did
not show any evident damage; seeds in the three latter categories
were considered dead. However, we acknowledge that some of the
seeds removed by rodents could have been secondarily dispersed,
rather than preyed upon immediately, as we discuss later.

The seeds used in this experiment did not germinate (we con-
tinued observing them for a total of 60 d). We believe that storing
the dry seeds for 2–3 d before placing them in the field may have
caused viability loss due to desiccation (seeds of other Brosimum
species are known to be recalcitrant or desiccation-sensitive;
Mayrinck et al. 2016). Nonetheless we believe that the results of
this experiment give us a relatively accurate idea of what happens
to seeds after being deposited in dung on the forest floor, before
germination occurs.

Seed germination, seedling establishment, survival and growth
Because seeds used in the previous experiment did not germinate,
we set up an additional experiment in November and December
2011, during the second fruiting period, to assess germination,
establishment and seedling performance. We repeated the same
experimental design as described above, but the 300 seeds were
only extracted from the fruits at the moment of experimental setup
(to avoid desiccation), they were not marked nor imbedded in
dung, and they were protected against predation/removal by
rodents with a small (15 × 10 cm) wire mesh cage (mesh size
0.5 × 0.5 cm). To allow seedlings to continue growing, the top
of the cage was removed when seedlings were ∼10 cm tall. We
recorded germination at the moment of radicle appearance and
seedling establishment when we observed the first two leaves.
Seedling survival and growth measurements were carried out for
19 mo. We refer to these seedlings as the ‘experimental cohort’
and they represent an early seedling phase.

We also assessed survival and growth of B. lactescens seedlings
that we found naturally established in the same experimental sites
in July 2011. In each site we chose five seedlings that were 8–10 cm
tall and that still had cotyledons attached; according to field obser-
vations we estimate that these seedlings were ∼6 mo old. We refer
to these seedlings as the ‘natural cohort’ and they represent a later
seedling phase. We recorded initial seedling height and number of
leaves; seedling survival and growth was recorded for 24 mo.

Seedling assemblages

To assess the influence of howler monkey primary seed dispersal
on the tree and liana seedling bank in both habitats (forest and
cocoa), we compared seedling and species densities found in
howler monkey latrines and in control locations. In each habitat
we selected nine latrines and nine control locations. At each of
these 36 sites we set up a 5 × 5-m plot, subdivided into 25 1-m2

subplots. We randomly chose 10 of these subplots and in each

we counted and identified all tree and liana seedlings ≤ 50 cm
height. Seedlings in the 360 subplots were recorded within a
3-mo period (February–April 2013). Seedlings were identified to
species and classified as originating from: (1) all fruits; (2) fleshy
fruits found in the howler monkey’s diet by Zárate et al. (2014);
(3) fleshy fruits not found in the monkey’s diet by Zárate et al.
(2014); and (4) dry fruits (dispersal through abiotic vectors or
granivorous animals). The three latter categories are mutually
exclusive and they add up to yield the seedlings in the first category.
For each site we estimated mean seedling and species density cal-
culating the average of the 10 subplots, except for the category of
dry fruits. For dry fruits, data contained large number of zeroes, so
we used the sum over the 10 subplots.

Data analyses

To evaluate the effects of the two fixed factors, each with two levels,
habitat (cocoa vs. forest) and seed-deposition (latrine vs. control),
we carried out generalized linear models in the R program version
3.4.4. For the three microclimatic variables, seedling growth and
density of seedlings and species, we used normal error structure.
For binomial variables (proportions of seeds alive, attacked by
predators, attacked by pathogens, germinated and proportions
of seedlings established and surviving) we used a quasibinomial
variance model to correct for overdispersion. Adequacy of models
was verified by examining the standardized residuals vs. the fitted
values and the graphical distribution of errors.

Results

Microclimatic conditions

Maximum temperature, relative humidity and illuminance were
homogeneous between seed deposition locations (latrine vs.
control) within habitats (maximum temperature: F1,57= 0.299,
P= 0.586; relative humidity: F1,57= 0.001, P= 0.999; illuminance:
F1,57= 0.797, P= 0.375, respectively). However, when comparing
habitats, two variables had significantly higher mean values in
cocoa, compared to forest: maximum temperature (26.5°C vs.
25.6°C; F1,58= 16.1, P= 0.001) and illuminance (0.48 vs. 0.03 lx;
F1,58= 9.04, P= 0.003). Relative humidity was similar in cocoa
and forest (98.3% vs. 98.2%; F1,58= 0.021, P= 0.884).

Seed and seedling fate

Seed survival
After 2 wk, 55% of the seeds in cocoa were alive (all moved by dung
beetles underneath the soil surface or the leaf litter), 28% had been
preyed upon or removed by granivorous animals and 17% had
been attacked by pathogens; in forest 49% were alive (all moved
by beetles), 44% had been preyed/removed and 7% were attacked
by pathogens. Seeds buried by dung beetles were found at an aver-
age depth of 2.1 ± 2.3 cm (mean ± SD) in the cocoa and 2.8 ± 2.9
cm in the forest. The proportion of seeds alive after 2 wk showed no
effect of habitat (F1,58= 0.359, P= 0.552), seed deposition location
(F1,57= 0.359, P= 0.551) or the interaction between factors
(F1,56= 0.065, P= 0.799; Figure 1a). However, the relative impor-
tance of seed mortality causes differed between habitats: in the for-
est predation/removal was the cause for 86% of seed mortality vs.
62% in the cocoa (F1,58= 4.19, P= 0.045), while pathogen attack
was responsible for 14% and 38% of seed mortality in forest vs.
cocoa (F1,58= 6.43, P= 0.014). Seed deposition location had no
effect on seed predation (F1,57= 1.43, P= 0.237) or pathogen
attack (F1,57= 3.46, P= 0.068), and neither had the interaction
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between habitat and deposition location (predation: F1,56= 0.262,
P= 0.610; pathogen attack: F1,56= 0.257, P= 0.614).

Seed germination, seedling establishment, survival and growth
Of the 300 seeds protected against removal/predation by vertebrates,
72% germinated, 11% were attacked by pathogens, 8% were preyed
upon by insects, and 9% did not germinate. The proportion of seed
germination was not affected by habitat (habitat: F1,58= 2.13,
P= 0.150), seed-deposition location (F1,57= 0.318, P= 0.575), or
the interaction (F1,56= 0.264, P= 0.609; Figure 1b). Of all germi-
nated seeds (215), 73% established as seedlings, 26% were attacked
by pathogens and 1%was preyed upon by insects. Seedling establish-
ment was not statistically different in the cocoa vs. the forest habitat
(67% vs. 79% of seeds that had germinated; F1,58= 3.84, P= 0.055),
but there was a tendency towards lower establishment in the cocoa,
particularly in the control locations (56%; Figure 1c). There was no
statistical effect of seed-deposition location (F1,57= 0.111, P= 0.740)
or the interaction (F1,56= 1.04, P= 0.312).

Of the 157 seedlings established in the experiment (experimental
cohort), 37.6% (59) survived for 19 mo. We found no significant
effect of habitat (F1,58= 0.438, P= 0.511), seed-deposition
location (F1,57= 0.115, P= 0.737) or the interaction (F1,56= 0.013,
P= 0.910) on seedling survival for the experimental cohort
(Figure 1d). On average, these seedlings grew 13.8 ± 2.8 cm in height
and grew 5 ± 2.1 new leaves. Factors had no effect on growth, either
in height (habitat: F1,58= 0.238, P= 0.627; seed-deposition location,
F1,57= 1.162, P= 0.286; interaction, F1,56= 0.003, P= 0.954) or leaf

number (habitat: F1,58= 0.006, P= 0.936; seed-deposition location,
F1,57= 0.038, P= 0.845; interaction, F1,56= 1.27, P= 0.264).

Of the 300 seedlings of the natural cohort, only 16% were alive
after 24 mo. Analysis showed that the effect of seed deposition
location was significant, with higher survival in control locations
than latrines (F1,57 = 6.36, P = 0.015). The effect of habitat was
not significant (F1,58 = 6.359, P = 0.055; Figure 1e), and neither
was the interaction between factors (F1,56 = 2.05, P = 0.158).
On average, seedlings of the natural cohort grew 13.4 ± 3.5 cm
in height and produced 4.5 ± 1.8 new leaves during the 24 mo
period. As with the experimental cohort of seedlings, neither
habitat nor seed-deposition location affected seedling growth
in height (habitat: F1,58 = 0.340, P = 0.561; seed-deposition
location: F1,57 = 1.78, P = 0.188; interaction, F1,56 = 0.632,
P = 0.430) or leaf number (habitat: F1,58 = 0.002, P = 0.963; seed-
deposition location: F1,57 = 2.373, P = 0.129; interaction,
F1,56 = 1.65, P = 0.205).

As a final exercise we estimated the overall probability for a
B. lactescens seed, in each combination of habitat and seed-
deposition location, to survive to a seedling age of ∼2.5 y
(Figure 1f). We did this by multiplying the mean proportions
of individuals reaching each of the regeneration phases (seed
survival, seed germination, seedling establishment, early seedling
survival and late seedling survival). For latrine locations in
both forest and cocoa the probability was ∼0.010; it was a bit
higher for control locations in the forest (0.014) and in the
cocoa (0.018).

Figure 1. Seed and seedling fates of a dominant tree species (Brosimum lactescens) commonly dispersed by howler monkeys in forest and shade cocoa habitats, in
two possible seed-deposition locations, monkey latrines and control locations, in the Lacandona rain-forest region, Mexico. For each combination of habitat and
seed-deposition location, 15 independent sites were used. Proportion of seeds (from a total of five seeds per site) alive after 2 wk (a); proportion of seeds (from a total
of five seeds per site) germinating (b); proportion of seedlings (from the total of seeds germinating) establishing (c); proportion of experimental (early) seedlings (from
the total of seedlings establishing) surviving for 19 mo (d); proportion of naturally established (late) seedlings (from a total of five seedlings ∼6 mo of age per site)
surviving for 24mo (e); and, overall probability of a seed surviving to become a 2.5-y-old seedling, calculated bymultiplying the proportions in all the previous parts (f).
Error bars are þ 1 SE of the mean. An asterisk (*) next to the name of the factor (habitat, location, or habitat × location) denotes statistical significance at P< 0.05.
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Seedling assemblages

In total we recorded 7921 seedlings belonging to 62 tree species
(7501 seedlings) and 15 liana species (420 seedlings) in 360
1-m2 subplots. In the cocoa habitat we found 4641 seedlings of
59 species, while in the forest we found 3280 seedlings of 68 species.
The large majority of seedlings (93.5%) originated from fleshy
fruits adapted for seed dispersal by frugivorous animals, while only
6.5% originated from dry fruits adapted for dispersal by abiotic
vectors or granivorous animals. Seedlings of two fleshy-fruited tree
species represented 68% of all seedlings recorded in the cocoa
habitat (Brosimum lactescens 38%, Brosimum alicastrum 30%).
Dominance was less pronounced in the forest, with five fleshy-
fruited tree species representing 68% of all seedlings (Brosimum
alicastrum 17%, Virola guatemalensis 15%, Brosimum lactescens
12%, Ampelocera hottlei 12%, Castilla elastica 12%).

When all seedlings were analysed we found significant effects
of habitat (F1,34= 5.98, P= 0.020) and seed deposition location
(F1,33= 6.538, P= 0.015), but no significant interaction
(F1,32= 0.117, P= 0.734) on seedling density. Higher seedling den-
sities were found in cocoa compared with forest, and in latrines
compared with control locations (Figure 2a). Species density
was also higher in latrines than in control locations (F1,33= 30.0,
P= 0.001), but habitat (F1,34= 2.15, P= 0.152) and the interaction
of factors (F1,32= 0.106, P= 0.746) had no effect (Figure 2e).

For seedlings originating from fleshy fruits recorded in the howler
monkey’s diet the effects of habitat on seedling and species density
were not significant (seedling density: F1,34= 3.40, P= 0.074; species
density: F1,34= 1.77, P= 0.192; Figure 2b, f), but seed deposition
location was again significant, with latrines having higher densities
of seedlings (F1,33= 9.14, P= 0.005) and species (F1,33= 26.8,
P= 0.001). There was no effect of the interaction term on either

variable (seedling density: F1,32= 0.744, P= 0.395; species density:
F1,32= 0.054, P= 0.817).

For seedlings originating from fleshy-fruited species not
recorded in the monkey’s diet, there was no effect of habitat
(F1,34= 4.020, P= 0.053), seed-deposition location (F1,33= 0.025,
P= 0.876) or the interaction (F1,32= 1.142 P= 0.293; Figure 2c).
Similarly, for species density no factor had a significant effect (hab-
itat: F1,34= 0.133, P= 0.718; seed-deposition location, F1,33= 2.81,
P= 0.103; interaction, F1,32= 0.191, P= 0.665; Figure 2g).

Finally, for species with dry fruits, seedling density was higher
in cocoa than forest (F1,34= 4.64, P= 0.039; Figure 2d), but not
species density (F1,34= 3.97, P= 0.055; Figure 2h). For neither
response variable did seed-deposition location or the interaction
between factors have an effect (seedlings: seed-deposition location,
F1,33= 0.707, P= 0.407; interaction, F1,33= 0.223, P= 0.640;
species: seed-deposition location, F1,32= 1.59, P= 0.217; interac-
tion, F1,32= 1.16, P= 0.290).

Discussion

Primates are known to be important seed dispersers in the ecosys-
tems they inhabit, yet we know little about their role in seed
dispersal in agro-ecosystems, making this one of the current chal-
lenges in primate seed-dispersal research (Andresen et al. 2018). In
one of the few studies assessing primate seed dispersal in an agro-
ecosystem, Zárate et al. (2014) showed that some aspects of pri-
mary seed dispersal by howler monkeys inhabiting rustic cocoa
plantations in the Lacandona rain forest region were comparable
in the agro-ecosystem and the forest. With the present study we
went one step further, finding that, in general, seed and seedling
fates and the recruitment of monkey-dispersed plants were similar
in forest and cocoa, although we did find some phase-specific

Figure 2. Seedling and species density of tree and liana seedlings recorded in two habitats of the howler monkey (forest and shade cocoa) and in two seed-
deposition locations (monkey latrines and control locations) in the Lacandona rain-forest region, Mexico. According to their origin seedlings were classified into
four categories: seedlings from all fruits (a and e), seedlings from fleshy fruits recorded in the howler monkey’s diet according to Zárate et al. (2014) (b and f), seedlings
from fleshy fruits not recorded in the monkeys’ diet (c and g), and seedlings from dry fruits (d and h). For the first three categories, seedling and species densities are
expressed on a 1-m−2 basis; for the fourth category (d and h), densities are expressed per 10m2. Error bars areþ1 SE of themean. An asterisk (*) next to the name of the
factor (habitat, location, or habitat × location) denotes statistical significance at P< 0.05.
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effects of habitat and seed-deposition location. It is important,
however, to point out some limitations of our study. First, to deter-
mine if processes affecting the post-dispersal fate of seeds and seed-
lings were similar in the two habitats, we used one focal plant
species as a model. Since plant species vary greatly in the biotic
and abiotic factors affecting their early regeneration, our ability
to generalize our findings to other species is somewhat limited.
Second, while our results provide a valid comparison between
habitats and between seed-deposition locations during the study
period, between-year variability in the relative importance of fac-
tors affecting post-dispersal seed and seedling fates in different
habitats can be large in tropical forests (Feer & Forget 2002,
Feer et al. 2001). Third, we may have underestimated seed survival
by assuming that all seeds that we could not find had been preyed
upon by rodents, given that some of these seeds may have escaped
predation after being scatterhoarded (Vander Wall & Beck 2012,
Vander Wall et al. 2005). However, the probability of seeds
removed by rodents escaping predation is considered to be
quite low for Neotropical seeds <1 g weight and ∼1 cm length
(Forget et al. 1998) and for seeds with low ‘handling cost’ (little
physical and chemical defence; Vander Wall & Beck 2012), both
characteristics of B. lactescens.

For our focal plant species, the probabilities of seed survival,
germination and early seedling survival were similar in both hab-
itats and in both seed-deposition locations. It is important to note
that all seeds that were found in an apparently intact state (49% and
55% in forest and cocoa, respectively) were seeds that had been
moved by dung beetles and placed under the soil surface or the leaf
litter. After primary seed dispersal through mammal defecation,
dung beetle activity is responsible for re-shaping seed-deposition
patterns in several ways and consequently seed fate as well
(Braga et al. 2017). In particular, seeds buried by dung beetles
are known to have a high probability of avoiding seed predation
(Andresen 2001, Estrada & Coates-Estrada 1991, Shepherd &
Chapman 1998), and it is likely that seeds moved under the leaf
litter experience a similar advantage. In the rustic cocoa plantations
studied, the dung beetle community is similar in structure and
function (dung removal, soil excavation and seed movement) to
the community found in forest (Santos-Heredia et al. 2018), which
is probably one of the reasons why we found no effect of habitat on
seed survival. This finding also underscores the importance of
mimicking the conditions of primary seed dispersal, in this case
the presence of dung surrounding the seeds, when assessing
post-dispersal seed fate (Andresen 2001, Santos-Heredia et al.
2010). Finally, even though the probability of seed survival was
similar between habitats, predation/removal by rodents caused
most of the seed mortality in forest (86%) but was less prevalent
in cocoa (62%); the reverse occurred for pathogen attack, which
caused 14% and 38% of seed mortality in forest and cocoa, respec-
tively. This particular finding points towards potentially important
differences in seed removal by rodents between habitats, which
ought to be more carefully studied in the future, including the rel-
ative importance of rodents in seed predation vs. seed dispersal
through scatterhoarding (Feer & Forget 2002, Forget et al. 1998).

The probabilities of seed germination and early seedling sur-
vival of B. lactescens were also similar in the two habitats and in
the two seed-deposition locations. However, in terms of seedling
establishment, the probability was lower in the cocoa control loca-
tions, but this effect was compensated by a higher survival
probability of older seedlings (natural cohort) in these sites
(Figure 1c, e). Contrasting performance of different life stages
under particular environmental conditions is common in plants

(Schupp 1995, 2007). We think that in our study system these
results could have been driven by stage-specific responses to the
light environment. Brosimum lactescens is a shade-tolerant species
and early life stages, such as seedling establishment, may fare better
under shaded conditions (Poorter & Hayashida-Oliver 2000).
However, even shade-tolerant species are usually favoured by
higher light levels during later stages (Iriarte & Chazdon 2005).
The cocoa control sites, where survival of older seedlings was high-
est, had also the highest values of illuminance (an average of 0.563
lx, compared with 0.407 lx in cocoa latrine locations, and 0.03 lx in
forest locations).

Other environmental characteristics, not measured here, could
also have accounted for the lower seedling establishment but higher
survival of older seedlings in cocoa control locations. For example,
cocoa plantations in our study site have a thicker leaf litter layer,
when compared with the forest (Cervantes López 2017). Although
we donot know if litter characteristicswere different between control
and latrine locations, one study in French Guiana found that topsoil
of howler monkey latrines is more homogeneous due to loss of litter
(Pouvelle et al. 2008). Future studies assessing the fate of animal-
dispersed seeds and seedlings in agro-ecosystems will benefit from
measuring various biotic and abiotic factors known to affect plant
fitness during early stages of regeneration.

When we considered the mean proportions obtained in the field
experiments for each regeneration phase as estimates of transition
probabilities, we found that overall very few seeds of the focal plant
species may become 2.5 y old seedlings: ∼1.0% in latrines of both
forest and cocoa, 1.4% in forest control locations and 1.8% in cocoa
control locations (Figure 1f). This trend is in accordance with pre-
vious findings of diminished per capita seed/seedling survival prob-
abilities in monkey latrines, due to negative density dependent
processes in these sites (Russo 2005, Russo & Augspurger 2004).
Nonetheless, seedling density of howler-dispersed plant species
was higher in these locations compared with control locations
(Figure 2b, f), also in accordance with previous studies (Anzures-
Dadda et al. 2011, 2016; Bravo 2012, Julliot 1997). The latter pattern
is most likely a consequence of: (1) a large input of seeds in latrines
used by howler monkeys (Bravo 2009), and (2) an increase in the
activity of dung beetles in latrines (Feer et al. 2013) and the positive
effect of dung beetle activity on the establishment of seedlings from
the seed bank (Santos-Heredia & Andresen 2014). For plant species
not dispersed by howler monkeys there was no latrine effect, as one
could expect, although higher seedling densities were found in the
cocoa habitat than in the forest, perhaps due to the increased light
levels in the cocoa understorey and/or the decreased activity of
rodent seed predators in the agro-ecosystem.

To conclude, many groups of animals that play important eco-
logical roles in forest regeneration, such as primates, dung beetles
and rodents, inhabit agro-ecosystems worldwide. Both their long-
term conservation, and of the species with which they interact, will
to a large extent depend on our success inmanaging anthropogenic
landscapes in a way that the ecological functions of these animals
can be sustained. Our results add important evidence underscoring
the value of tropical agro-ecosystems with low-intensity manage-
ment (i.e. rustic and traditional systems, sensu Moguel & Toledo
1999) to maintain ecological processes crucial for ecosystem func-
tion. However, while agro-ecosystems such as the rustic cocoa
plantations studied here can play an important role in conserva-
tion, one must keep in mind that agro-ecosystems are foremost
productive systems, and as such are prone to change according
to socio-economic fluctuations (Estrada et al. 2012). Thus, it is
necessary that anthropogenic landscapes include permanent
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well-protected remnants of forest as an insurance against extinc-
tion and loss of ecosystem function. One of our roles as ecologists
is to work with local communities and local governments to con-
vince them of this necessity.
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